Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 10 - Model Selection And Boosting/Grid Search/[R] Grid Search.ipynb
1341 views
Kernel: R

Grid Search

Data preprocessing

# Importing the dataset dataset = read.csv('Social_Network_Ads.csv') dataset = dataset[3:5]
# Encoding the target feature as factor dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))
# Splitting the dataset into the Training set and Test set # install.packages('caTools') library(caTools) set.seed(1234) split = sample.split(dataset$Purchased, SplitRatio = 0.80) training_set = subset(dataset, split == TRUE) test_set = subset(dataset, split == FALSE)
# Feature Scaling training_set[-3] = scale(training_set[-3]) test_set[-3] = scale(test_set[-3])

Applying Grid Search to find the best model and the best parameters

library(caret) classifier = train(form = Purchased ~ ., data = training_set, method = 'svmRadial')
Loading required package: lattice Loading required package: ggplot2 Attaching package: ‘kernlab’ The following object is masked from ‘package:ggplot2’: alpha
classifier
Support Vector Machines with Radial Basis Function Kernel 320 samples 2 predictor 2 classes: '0', '1' No pre-processing Resampling: Bootstrapped (25 reps) Summary of sample sizes: 320, 320, 320, 320, 320, 320, ... Resampling results across tuning parameters: C Accuracy Kappa 0.25 0.9058640 0.7969638 0.50 0.9065979 0.7987936 1.00 0.9054507 0.7962180 Tuning parameter 'sigma' was held constant at a value of 1.599667 Accuracy was used to select the optimal model using the largest value. The final values used for the model were sigma = 1.599667 and C = 0.5.
classifier$bestTune

Fitting classifier to the Training set

# install.package('e1071') library(e1071) classifier = svm(formula = Purchased ~ ., data = training_set, type = 'C-classification', kernel = 'radial', C = 0.5, sigma = 1.599667)

Predicting the Test set results

y_pred = predict(classifier, newdata = test_set[-3])
head(y_pred, 10)
head(test_set[3], 10)

Applying k-Fold Cross Validation

library(caret)
folds = createFolds(training_set$Purchased, k = 10) cv = lapply(folds, function(x){ training_fold = training_set[-x, ] test_fold = training_set[x, ] classifier = svm(formula = Purchased ~ ., data = training_fold, type = 'C-classification', kernel = 'radial') y_fold_pred = predict(classifier, newdata = test_fold[-3]) cm = table(test_fold[, 3], y_fold_pred) accuracy = (cm[1, 1] + cm[2, 2])/(sum(cm)) return(accuracy) })
cv
mean(as.numeric(cv))
sd(as.numeric(cv))

This signifies that we are in Low Bias Low Variance category in Bias-Variance TradeOff.


Making the Confusion Matrix

cm = table(test_set[, 3], y_pred) cm
y_pred 0 1 0 45 6 1 4 25

classifier made 45 + 25 = 75 correct prediction and 6 + 4 = 10 incorect predictions.


Visualising the Training set results

library(ElemStatLearn) set = training_set X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) colnames(grid_set) = c('Age', 'EstimatedSalary') y_grid = predict(classifier, newdata = grid_set) plot(set[, -3], main = 'Kernel SVM (Training set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'), col='white') legend("topright", legend = c("0", "1"), pch = 16, col = c('red3', 'green4'))
Image in a Jupyter notebook

Visualising the Test set results

set = test_set X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) colnames(grid_set) = c('Age', 'EstimatedSalary') y_grid = predict(classifier, newdata = grid_set) plot(set[, -3], main = 'Kernel SVM (Test set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'), col='white') legend("topright", legend = c("0", "1"), pch = 16, col = c('red3', 'green4'))
Image in a Jupyter notebook

Looks like it is much better the Linear kernel.